Predicting the Accuracy of Regression Models in the Retail Industry
نویسندگان
چکیده
Companies are moving from developing a single model for a problem (e.g., a regression model to predict general sales) to developing several models for sub-problems of the original problem (e.g., regression models to predict sales of each of its product categories). Given the similarity between the sub-problems, the process of model development should not be independent. Information should be shared between processes. Different approaches can be used for that purpose, including metalearning (MtL) and transfer learning. In this work, we use MtL to predict the performance of a model based on the performance of models that were previously developed. Given that the sub-problems are related (e.g., the schemas of the data are the same), domain knowledge is used to develop the metafeatures that characterize them. The approach is applied to the development of models to predict sales of different product categories in a retail company from Portugal.
منابع مشابه
Investigating the accuracy of multivariate regression and ARIMA models in predicting water demand (Case Study: Mashhad city)
Awareness of water demand is of particular importance for its policy in urban management. Predicting water demand in the future will allow managers to take the necessary measures regarding sustainable water supply, given the constraints and crises ahead. The purpose of this study is to compare multivariate regression and ARIMA models to predict water demand in Mashhad. In this study, first, the...
متن کاملComparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings
Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...
متن کاملPredicting Customer Churn Using CLV in Insurance Industry
Today, increased level of customer awareness caused themto access to the other suppliers easily and they can get their servicesfrom the competitors with similar or even better quality and same price.Therefore, focusing on customers and preventing them to leave, has beenthe most important strategy for any company. Researches have shownthat retaining former customers is cheaper than attracting ne...
متن کاملپیشبینی بقای بیماران مبتلا به سرطان پستان با استفاده از دو مدل رگرسیون لجستیک و شبکه عصبی مصنوعی
Background and Objectives : recent years, considerable attention has been paid to statistical models for classification of medical data according to various diseases and their outcomes. Artificial neural networks have been successfully used for pattern recognition and prediction since they are not based on prior assumptions in clinical studies. This study compared two statistical models, arti...
متن کاملComparison of the efficiency of data mining methods in predicting type 2 diabetes
Background: Diabetes mellitus as a chronic disease is the most common disease caused by metabolic disorders and it is one of the most important health issues all around the world. Nowadays, data mining methods are applied in different fields of sciences due to data mining methods capability. Therefore, in this study, we compared the efficiency of data mining methods in predicting type 2 diabete...
متن کاملEvaluation of moving bed biofilm reactor (MBBR) by applying adaptive neuro-fuzzy inference systeme (ANFIS), radial basis function (RBF) and Fuzzy Regression Analysis
The purpose of this study is to investigate the accuracy of predictions of aniline removal efficiency in a moving bed biofilm reactor (MBBR) by various methods, namely by RBF, ANFIS, and fuzzy regression analysis. The reactor was operated in an aerobic batch and was filled by light expanded clay aggregate (LECA) as a carrier for the treatment of Aniline synthetic wastewater. Exploratory data an...
متن کامل